Himpunan adalah kumpulan dari objek-objek tertentu yang tercakup dalam satu kesatuan dengan keterangannya yang jelas. Untuk menyatakan suatu himpunan, digunakan huruf kapital seperti A, B, C dsb. Sedangkan untuk menyatakan anggota-anggotanya digunakan huruf kecil seperti a, b, c, dsb.
Ada empat cara untuk menyatakan suatu himpunan
1. Enumerasi: dengan mendaftarkan semua anggotanya (roster) yang diletakkan di dalam sepasang tanda kurung kurawal, dan di antara setiap anggotanya dipisahkan dengan tanda koma.
Contoh:
A = {a, i, u, e, o}
2. Simbol baku: dengan menggunakan simbol tertentu yang telah disepakati.
Contoh:
P adalah himpunan bilangan bulat positif
Z adalah himpunan bilangan bulat
R adalah himpunan bilangan riil
C adalah himpunan bilangan komplek
3. Notasi pembentuk himpunan: dengan menuliskan ciri-ciri umum atau sifat-sifat umum (role) dari anggota.
Contoh :
A = {x|x adalah himpunan bilangan bulat}
4. Diagram Venn: menyajikan himpunan secara grafis dengan tiap-tiap himpunan digambarkan sebagai lingkaran dan memiliki himpunan semesta (U) yg digambarkan dng segi empat.
Contoh :
Irisan dua himpunan yang dinyatakan dengan diagram venn
Simbol-simbol khusus yang dipakai dalam teori himpunan adalah:
RELASI ANTAR HIMPUNAN
1. SUBHIMPUNAN
Dari suatu himpunan, misalnya A = {apel, jeruk, mangga, pisang}, dapat dibuat himpunan-himpunan lain yang elemen-elemennya adalah diambil dari himpunan tersebut.
* {apel, jeruk}
* {jeruk, pisang}
* {apel, mangga, pisang}
Ketiga himpunan di atas memiliki sifat umum, yaitu setiap anggota himpunan itu adalah juga anggota himpunan A. Himpunan-himpunan ini disebut sebagai subhimpunan atau himpunan bagian dari A. Jadi dapat dirumuskan:
B adalah himpunan bagian dari A jika setiap elemen B juga terdapat dalam A.
Kalimat di atas tetap benar untuk B himpunan kosong. Maka \varnothing juga subhimpunan dari A.
Untuk sembarang himpunan A,
Definisi di atas juga mencakup kemungkinan bahwa himpunan bagian dari A adalah A sendiri.
Untuk sembarang himpunan A,
Istilah subhimpunan dari A biasanya berarti mencakup A sebagai subhimpunannya sendiri. Kadang-kadang istilah ini juga dipakai untuk menyebut himpunan bagian dari A, tetapi bukan A sendiri. Pengertian mana yang digunakan biasanya jelas dari konteksnya.
Subhimpunan sejati dari A menunjuk pada subhimpunan dari A, tetapi tidak mencakup A sendiri.
2. SUPERHIMPUNAN
Kebalikan dari subhimpunan adalah superhimpunan, yaitu himpunan yang lebih besar yang mencakup himpunan tersebut.
3.KESAMAAN DUA HIMPUNAN
Himpunan A dan B disebut sama, jika setiap anggota A adalah anggota B, dan sebaliknya, setiap anggota B adalah anggota A.
atau
Definisi di atas sangat berguna untuk membuktikan bahwa dua himpunan A dan B adalah sama. Pertama, buktikan dahulu A adalah subhimpunan B, kemudian buktikan bahwa B adalah subhimpunan A.
HIMPUNAN
Sabtu, 23 April 2011
Diposting oleh Arum Muftii di 17.55
Langganan:
Posting Komentar (Atom)
0 komentar:
Posting Komentar